An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering
نویسندگان
چکیده
The application of the Bayesian Structural EM algorithm to learn Bayesian networks for clustering implies a search over the space of Bayesian network structures alternating between two steps: an optimization of the Bayesian network parameters (usually by means of the EM algorithm) and a structural search for model selection. In this paper, we propose to perform the optimization of the Bayesian network parameters using an alternative approach to the EM algorithm: the BC+EM method. We provide experimental results to show that our proposal results in a more effective and eecient version of the Bayesian Structural EM algorithm for learning Bayesian networks for clustering.
منابع مشابه
A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملUnsupervised Learning Of Bayesian Networks Via Estimation Of Distribution Algorithms: An Application To Gene Expression Data Clustering
This paper proposes using estimation of distribution algorithms for unsupervised learning of Bayesian networks, directly as well as within the framework of the Bayesian structural EM algorithm. Both approaches are empirically evaluated in synthetic and real data. Specifically, the evaluation in real data consists in the application of this paper’s proposals to gene expression data clustering, i...
متن کاملStructural EM for Hierarchical Latent Class Models
Hierarchical latent class (HLC) models are tree-structured Bayesian networks where leaf nodes are observed while internal nodes are not. This paper is concerned with the problem of learning HLC models from data. We apply the idea of structural EM to a hill-climbing algorithm for this task described in an accompanying paper (Zhang et al. 2003) and show empirically that the improved algorithm can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 21 شماره
صفحات -
تاریخ انتشار 2000